Disjoint difference families and their applications

نویسندگان

  • Siaw-Lynn Ng
  • Maura B. Paterson
چکیده

Difference sets and their generalisations to difference families arise from the study of designs and many other applications. Here we give a brief survey of some of these applications, noting in particular the diverse definitions of difference families and the variations in priorities in constructions. We propose a definition of disjoint difference families that encompasses these variations and allows a comparison of the similarities and disparities. We then focus on two constructions of disjoint difference families arising from frequency hopping sequences and show that they are in fact the same. We conclude with a discussion of the notion of equivalence for frequency hopping sequences and for disjoint difference families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Sets of Disjoint Difference Families and their Applications

Let G be an abelian group. A collection of (G, k, λ) disjoint difference families, {F0,F1, · · · ,Fs−1}, is a complete set of disjoint difference families if ∪0≤i≤s−1∪B∈FiB form a partition of G− {0}. In this paper, several construction methods are provided for complete sets of disjoint difference families. Applications to one-factorizations of complete graphs and to cyclically resolvable cycli...

متن کامل

Disjoint Difference Families from Galois Rings

In this paper, we give new constructions of disjoint difference families from Galois rings. The constructions are based on choosing cosets of the unit group of a subring in the Galois ring GR(p2, p2s). Two infinite families of disjoint difference families are obtained from the Galois rings GR(p2, p4n) and GR(22, 22s).

متن کامل

Difference families with applications to resolvable designs

Some block disjoint difference families are constructed in rings with the property that there are k distinct units uit 0 < i < k — 1, such that differences ut — Uj (0 < i < j < k — 1) are all units. These constructions are utilized to produce a large number of classes of resolvable block designs.

متن کامل

Six Constructions of Difference Families

In this paper, six constructions of difference families are presented. These constructions make use of difference sets, almost difference sets and disjoint difference families, and give new point of views of relationships among these combinatorial objects. Most of the constructions work for all finite groups. Though these constructions look simple, they produce many difference families with new...

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2016